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Short Papers

On a Direct Use of Edge Condition in Modal Analysis

C. VASSALLO

~bstract—The edge condition allows ns to know the asymptotic
decrease of modal amplitudes in some discontinuity problems in wave-

goides. One may take a direct account of this information in modal
analysis and gain a significant improvement of the calculation when tbe
field singularity at edge is important. The accuracy and the validity of

this method are studied in two cases: the diaphragm and tbe junction

between an empty waveguide and a partially dielectric-filled wavegaide.

INTRODUCTION

The modal analysis is appropriate for all the waveguide

discontinuities contained in a single cross-section plane, i.e., dis-

continuities like irises or abrupt transitions from one kind of

guide to another one [1]. Its formulation is very easy, and modern

computers can cope with the high-rank linear systems which may

result from its application. However, these systems are only the

truncated approximations of the theoretical systems of infinite

rank in a rigorous formulation of the method, and some dif-

ficulties, such as the relative convergence effect, may lead to false

results [2], [3] or a too slow rate of convergence may lead to

inaccurate results. In this work we present a method based upon
the edge effect theory, which may improve the convergence. We
shall present our method in Section I, then we shall study its
application to different kinds of discontinuities in order to know
its range of interest.
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1. IVIODAL ANALYSIS AND EDGE EFFECT

Let us consider an abrupt transition between a left waveguide

the kth normal mode of which has transverse components

(ek’,h~), and a right waveguide thepth normal mode of which has

transverse components (eP “,hP”). The equations which describe

the scattering of the nth left normal mode on the transition have

the following form:

~ (6,. + R.)e,’(x, Y) = ~ Tpep’’(x, Y) (1)

; (h - &)h’(X,y) = ~ ~P~(X,Y) (2)
P

where the unknown coefficients are (R~) and (Tp) (k,p =

1,2,.. .). By taking the cross product of the two sides of these

equations with the functiqns of any set complete on the cross

section, one obtains an equivalent infinite algebraic linear system.

For instance, with the set {eP”} one may transform (1) into

a,

TP = ~, (dkn + Rk)Vp~,’ (p = 1,2,. ... m) (3)
k=l

where the VP~are defined by integrals on the mode components.

Equation (2) is transformed in a similar way.

The practical resolution consists of retaining a finite number of

unknown modal coefficients. For instance, system (3) is replaced

by
Ar

Tp = Y, (~k. + Rk) ‘Pk, (p = 1,2,.. .,P) (4)
k=l

and the integers N and ~ are chosen in order to have as many

equations as urtlcnown coefficients. Then, one has an ordinary

linear system.
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In that process one gives up any available knowledge on the
modal coefficients of higher order. Now, such a knowledge exists
as soon as there is an edge effect in the discontinuity between the
two guides; then, one may write R~ E Rf(k) for high k, where

~ is unknown and f(k) is a known function (Appendix A). It is

possible to introduce this information in the computation by

replacing (4) by

T. = f’ VP~(3~n -i- -&) + R ~ Vpkf (k). (5)
k=l k>N

There is one more unknown coefficient (i?), and thus one has to
retain one more value for integer p. It seems reasonable to think

that (5) is a better approximation of(3) than the mere truncation

of (4), and we may hope for a better behavior of the calculations

with this new system.

In the following sections of this short paper we present the

results of our method in different cases of edge effect; we intend to

study its accuracy in comparison with the usual method. Section

II deals with capacitive and inductive diaphragms and Section

III deals with dielectric steps.

11. DIAPHRAGMS

In order to study the convergence properties of our method, it

is better to deal with a problem which has an analytical solution.

We chose the asymmetrical semidiaphragm in rectangular wave-

guide, either capacitive or inductive (Fig. 1), and we calculated

its equivalent shunt impedance by different ways.

1) Exact calculation.l

2) Modal analysis with ordinary truncation, Different methods

are possible; we retained that described by Lee, Jones, and

Campbell (LJC) [2], which has a quite better rate of con-

vergence than that described by h4ittra, Itoh, and Li (MIL) [3].

These different methods correspond to the use of different com-

plete sets to transform (1) and (2).

3) Our method with edge effect. Its only difficulty lies in the

summation of the series appearing in (5) and it depends strongly

on the formalism followed before truncation. For instance, the

LJC method leads to a series like ~~ k-m sin (karr) where a

is the relative width of the diaphragm; there is no problem with

semidiaphragm (a == 1/2) but there would be one with arbitrary

a. We preferred the MIL method for our calculations; the

corresponding series behaves as ~ k-m whatever a is.

In Figs. 2 and 3 we have plotted the relative error on shunt

impedance (X – X.X,Ct)/X.X.Ct versus the number of modes re-

tained in the truncation, both with usual modal analysis and with

our method, for three frequencies: just above the cutoff of the

dominant mode, just below the cutoff of the first higher mode,

and an intermediate frequency. One can see that taking account

of the edge effect leads to a substantial improvement in accuracy,

especially for the capacitive diaphragm. The improvement is less

spectacular for the inductive diaphragm; we think that must be

connected with the nature of the field singularity which is quite

weaker in the second case (singularity in r 1’2 instead of r – 1’2

for the capacitive case) [4, pp. 18-20].

We have reported similar results elsewhere on the problem of

bifurcation [5], which also has an analytical solution and maybe

connected to the problem of the diaphragm [3]. Especially, we

found that there is no longer any relative convergence effect

[2], [3] with our method, which may be easily understood since

that effect is due to the truncation in usual modal analysis while

i See [4, p. 441] for reductive semidiaphragm and [4, pp. 347 and 452]
for capacitive semidiaphragms.
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Fig. 1. (a) Capacitive semidiaphragm in rectangular waveguide. (b)
Inductive semidiaphragm in rectangular waveguide.

Fig. 2. Relative errors on shunt-impedance versus the number of modes in
the waveguide for the capacitive semidiaphragm. Continuous lines
correspond to usual modal analysis, dotted 1ines to our method. The
numbers 1,2, 3 correspond to the normalized frequencies k“b/rc = 1.0198,
1.414, and 1.9895 (ko = ojc).
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Fig. 3. Relative errors for inductive semidiaphragms for the same frequen-
cies as Fig. 2.

in our method the higher terms are retained,

asymptotic form.

III. DIELECTRIC STEPS

at least in their

our method, weIn order to explore the domain of interest of

turn now towards the quite different problem of dielectric steps

in parallel plate waveguide (Fig. 4). For z > 0 the guide is

loaded with an isotropic slab of dielectric constant e. In the

literature such a junction has been especially studied in the case of

TE excitation [6], [7]. The TM case is more interesting with

respect to the edge effect.

The reader will find the main part of the calculation in

Appendix B. We met two difficulties in this problem.

1) The series of asymptotic terms are very complicated [(B5)]

and they cannot be summed with accuracy. We merely added

the 100 first terms for each of them. Such a procedure applied
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Fig. 4. Partially dielectric-filled junction in parallel-plate waveguide.
The incident mode is the dominant mode, either in TM case (TEM
mode) orin TE case.

to the diaphragm problem would have degraded the precision
of the results.

2) How to appreciate the validity of the results and their
convergence? Checking how the basic equations (1) and (2) are
verified seems to be the best criterion. For that we calculate the
ratios

where the integrals are taken over the cross section, and where
EL,. HL and ER, HR are the computed transverse fields in the
junction plane. (These fields would appear directly in (1) and (2)

after truncation.)

Similar criteria have already been used [6], [8.]. The ratios

Sz and e~ must be small if the calculation is good. Unfortunately,

the integrals are very diilicult to, calculate in our case because

they contain infinite series due to the asymptotic terms, and these

series behave quite badly (roughly as ~~ k– t cos knx/a for the

eledric field and as ~~ k– 1‘r cos knx/a for the magnetic field,

with O < t < 1). We retained only a rough approximation of
them by adding the 100 first terms.

However, that criterion concerns the synthesis of the entire
fkid while often only the first scattering coefficients have practical

importance; there is no tight connection between the accuracy

on these coefficients and the smallness of 8E and e~. Thus if we
are interested only in these coefficients (for instance, if we want

to establish some equivalent circuit of the junction), it is better
to observe the apparent convergence of these coefficients.

We have reported some of our results in Table I. Successively,

one reads the number of modes in the empty waveguide, &E,
with the usual method and with ours, c~ with the usual method
and with ours, and the reflection coefficient of the dominant
mode RI with the usual method and with ours. The table corres-

ponds to parameters cla = 0.231 and e = 2.47; the normalized
frequency is koajrc = 0.191 for the upper part, and 0.835 for the
lower part. At first glance we may state the following conclusions.

1) The usual modal analysis gives scattering coefficients which
converge rapidly. The rate of convergence decreases with higher
frequency or higher dielectric constant, but it remains good (for
instance, with E = 9.91, koa/rr = 0.835, and 15 modes, one

obtains RI with likely less than 0.2-percent error).

2) The usual modal analysis gives a good enough approx-

imation for the magnetic field (low s~), but a poor one for the

electric field (high @, which was expected since only the

electric field is singular. Both &E and s~ increase with higher

frequency, as is usual in modal analysis.

3) Our method gives some improvement on e~ and s~, but

the gain is rather moderate, especially on e~: that would signify

that the singularity is not adequately described by the only

asymptotic terms we retained in our calculation.

4) Our method seems to increase the rate of convergence for

the scattering coefficients. However, we must point out two

objections which cannot be inferred from the table. First, the

results are sensitive to the accuracy with which the asymptotic

series is summed. We noted that in the diaphragm problems. In

the dielectric step the series cannot be summed easily and thus

one can induce some error. Second, for some values of N one

may obtain abnormal results (high eE and e~, RI far from its

limit) which disappear for the following values of N. We do not

explain that instability; perhaps it maybe related to the problem

of the summation of the series? In any case it is a serious ob-

jection against a large use of our method, at least in that problem.

In conclusion, if there is interest only in the first scattering

coefficients, we think it preferable to use the usual modal analysis

which converges very rapidly in that problem (compare the

aforementioned 0.2-percent error for 15 modes with the curves

in Figs. 2 and 3), for the gain in convergence with our method is

seriously counterbalanced by the difficulty of summing the series.

If one is interested in the whole electromagnetic field, only our

method takes into account the singularity; but we have seen that

the improvement so obtained is not sufficient. That is likely

connected with the weakness of the singularity (with e = 2.47,

TABLE I
COMPARISONBETWEEN USUAL METHOD AND OURS FOR THE DIELECTRIC STEP

I kOalr = 0.191

‘E ‘H II
I ,

usual ours I usual ours I usual our s

5 1.3 10-2 5.410-” I 91 0.037298 + i 0.003106
,5, .-4 ]! ‘“2 ‘o:;

6.4 10- 0.037292 + i 0.003181

10 7.4 10-2 I 1.710 6.4 10-9 0.037294 + i 0.003162 0.037293 + i 0.003185

15 5. 10-3 5. 10-4 , 7.7 10-8 6.410-’ ~ 0.037293 + i 0.003175 0.037293 + i 0.0031S4

koalr = 0.835

8.2 10-3 , 1.9 10-5 3.1 10-8 0.050561 + i 0.006421 0.050523 + i 0.006510

1,: :::::: 8./. 1o-3
I

3.1 10-6 3.5 10-8 0.050527 + i 0.006861 0.050495 + i 0.006867

15 2.8 10-2 7.8 lo-3 ~ ].5 10-6 3.6 10-8 0.050528 + i 0.006957 0.050532 + i 0.007011
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close to the edge, one must go 160 times nearer the edge in order

to double the electric field); the modal coefficients must not be

represented by their asymptotic form below very high order.

For completeness, let us mention the case of TE excitation.

There is no longer any edge effect in it [9], and no information
can be deduced from it.2 The usual modal analysis converges
quite rapidly: for instance, we obtain ZB = 3.810-7 and c~ =
5.710-7 with cla = 0.2786, e = 2.4’7, koa/n = 1.617, and

N = 15.

IV. CONCLUSION

Our method is an attempt to take into account a part of the

information which is lost with the truncation in usual modal

analysis. Such information is available when there is an edge

effect. Thus one obtains more accurate results for the same num-

ber of modes. The interest of our method depends on two factors.

1) The field must be perturbed by the singularity on a large

scale. If the field varies as rp near the edge, the exponent p has

to be as far as possible from zero. With a weak perturbation the

ordinary modal analysis converges rapidly and our method is

not worthy.

2) The series which appears in our method must be summed

easily. This is possible with problems of diaphragms or bi-

furcation; it is not the case in dielectric steps.

Thus our method has little interest for dielectric steps. Never-

theless we gave some details on that problem because there are

few published results on it. On the contrary, we obtain good

results with diaphragms: over 99 percent of the useful frequency

range in rectangular waveguide, we have less than 0.3-percent

error in the inductive case with 20 modes (against 1.8 percent

with the usual method). In the capacitive case, where the per-

turbation is very strong, we have less than 0.02-percent error with

20 modes (against 0.7 percent with the usual method).

APPENDIX A

ASYMPTOTIC BEHAVIOR OF MODAL AMPLITUDES

In order to make clearer the derivation of the function f(k)
from the edge condition, let us begin by the example of the
capacitive diaphragm in parallel-plate waveguide [b + m in
Fig. l(a) ]. It is well known that one may write the electric field
as e(x) + R(x – a/2)-1/2 in the diaphragm plane [4, pp. 18-20],
where e(x) is regular and where R is an unknown constant. Thus
the kth reflection coefficient is

When k ~ co, the contribution from e(x) behaves as k-2, and
the contribution from the singular term may be written as

[+

2 1mCos‘x+‘n’2)dX R = f (k)R.
AX o JY

It decreases as k-112 and thus is the dominant term.

We see that the asymptotic behavior of the modal coefficient is

ruled by the expression of the field near the edge. That may be

generalized as follows. One may always consider the modal

coefficients as Fourier coefficients of the transverse fields; it is

well known that the asymptotic behavior of Fourier coefficients

of a given function is ruled by the singularity of highest order

which appears in that function or its derivatives. In our case of

singularity due to the edge effect, we can know exactly the form

of the singularity (at least in simple cases—as far as we know
there is no theory of edge effect for obstacles of arbitrary shape)
and then we derive from it the asymptotic behavior of modal
coefficients.

APPENDIX B

The equations of the scattering of the TEM mode are

where the unknown coefficients are Rk and Tp. The other
quantities are

yk = O – (kz/ako)2)112 , (k = 0,1,2,...)

&(x) = 8(0 < x < c), or I(x > c)

h,(x) =
{

CosUp’x, (o<x <{c)

Ap cos aP(a – x), (c<x<!”z)

with

AP = cos an’cjcos apb

12_a 2 = k02(e – 1)UP P

UP’tan aP’c + &aPtan anb = O

rp = (& – (ap’/ko)2)1’2.

We solved this system by taking the cross products of (Bl) and
(B2) with the functions {COSkz(x/a)} (k = 0,1,.. .), and then
by eliminating the R~.

In the vicinity of the edge, outside the dielectric, we may write
the electric field as [9]

EP = 12 cos t(v – Z)pt-l + II sin 7(P – Z)fl’-l @3)

where (P, p) are the polar coordinates defined in Fig. 4, 11, 12 are

unknown coefficients, and where ~ – 1 = 1 – twith

l&-lcost? =-—
2 2,&+l’

(o<t <l). (B4)

With respect to the symmetry plane of the dielectric wedge, the
two terms of (B3) correspond to the symmetrical lpart and the

antisymmetrical of the electric field. Both will be present since

this plane is not a symmetry element of the entire problem. They
lead to the following asymptotic form for the Tp:

2 On that point we do not understand [6, p. 275, condition f. 5].

+ Cos?co+”b-31(a;)-’r(t)’2
+[-cos~cos(a;c+3
+cos~cosb’b+31(a;)’-2r(2-‘)’1‘B5)
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where r(z) is the gamma function. One sees that the antisym-

metric field (11) corresponds to terms decreasing roughly as

– 3+ c, while the symmetric part (12) corresponds to terms as
~-1 – t. AS (B4) givestnearunity, especially for low C, one cannot

‘neglect the antisymmetric part. We retained the two kinds of

terms in our calculation.
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Improved Accuracy for Commensurate-Line Synthesis

JAMES KOMIAK, STUDENT MEMBER, IEEE, AND
HERBERT J. CARLIN, FELLOW, IEEE

Abstract—By employing a simple transformation that preserves

numerical accuracy, improved precision is obtainable using a Richards’

extraction teehnique to obtain characteristic impedances of commensurate

transmission-line structures. Furthermore, reduced sensitivity to co-
efficient truncation can result in computational savings.

In this short paper, we would like to report on certain aspects
of the numerical calculation of characteristic impedances of
cascaded commensurate-line networks. If correctly employed,
Richards’ extraction can be an extremely simple yet powerful
and well-behaved algorithm. If misapplied, it can create large
numerical inaccuracies.

The most important application of commensurate-line
synthesis has been to problems of insertion loss design. The
prescribed problem is typically the realization of a transducer
gain function

(1 – a’y
s21(a)s~l(–a) = = \s,l(jK_2)\2 (1)

Pn(– AZ) ~=jQ

where Pn is an even polynomial of degree 2n and the transformed

frequency variable is

Z +jS2 = L = tanhpr, p=cr+jw

where co is radian frequency. 1 For example Levy [1] gives
commensurate-line characteristic impedances for low-pass
Chebychev filter transducer gain functions. We here consider the
numerical synthesis of arbitrary (but realizable) transducer gain
functions, for example low-pass or bandpass filters, broad-band
transformers, delay lines with amplitude selectivity, equalizers,
matching networks, etc.

Considering a lossless reciprocal 2 port in the A domain, the
unitary requirement demands that the resistively terminated
2 port have an input reflection factor SI~(1) satisfying

~ll(l)sll(–a) = 1 – ‘S2~(J’).$’2~(-i)l~zcj* = lsll(.K2)12.

The function .rI 1(2) is found by choosing the appropriate numer-

ator and denominator root factors. The denominator must be

Hurwitz but there is generally considerable flexibility in the choice

of numerator roots, as well as a choice of a ~ sign. Our task is

to consider a suitable numerical method to determine the

characteristic impedances of the structure, once SI ~(1) has been

given. We can of course proceed directly to the use of Richards’

theorem for extracting the lines, given SI ~(1) the input reflection

factor of the resistively terminated cascade. However, this can

lead to large numerical errors.

Our technique is to numerically operate on the input reflection

factor SI ~(1) of the resistively terminated cascade in a manner that

preserves numerical accuracy and yields the reflection factor of

the cascade of lines terminated in a short or open circuit rather

than in a resistance. We have found that synthesizing this lossless

function by Richards’ theorem is superior numerically to making

the line extraction calculations directly on SI ~(l). In the latter

case we deal with a two-element-kind network, whose input

impedance is complex at real frequencies. If we use the lossless

reflection factor, we deal with a purely reactive unit element

network.

Separate the numerator and denominator terms of SI ~(A) into

even and odd parts

h,(~) + hO(A)
s~~(a) = (2)

&(J) + %(a) “

The reflection factors of the unterminated cascade are then

(90 + %) – (a? – h.)
(g. + ho) + (g, – he)

(9. + k?) – (9. – k))
(9. + ~e)+ (90 – M

(3)

(4)

(90 ‘+ w – (a. + M

(go + ~.) + (ge + M
(5)

(9, – u – (90 – %)

(9. – M + (9. – h) “
(6)

Here s,, and s,. are the reflection factors at port 1 when the.- ..
opposite port is short or open circuited, respectively, and Sz, and

Manuscript received August 1, 1975; revised November 10, 1975. This S20 are similarly defined at port 2. These relations are generally
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valid starting with any resistively terminated reactance 2 port,

Electrical Engineering, Cornell University, Ithaca, NY, in partial ful-
fillment of the requirements for the M. S.. degree.

e.g., interdigital filters, but must be slightly modified if S12(0) =
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