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On a Direct Use of Edge Condition in Modal Analysis
C. VASSALLO

Abstract—The edge condition allows us to know the asymptotic
decrease of modal amplitudes in some discontinuity problems in wave-
guides. One may take a direct account of this information in modal
analysis and gain a significant improvement of the calculation when the
field singularity at edge is important. The accuracy and the validity of
this method are studied in two cases: the diaphragm and the junction
between an empty waveguide and a partially dielectric-filled waveguide.

INTRODUCTION

The modal analysis is appropriate for all the waveguide
discontinuities contained in a single cross-section plane, i.e., dis-
continuities like irises or abrupt transitions from one kind of
guide to another one [1]. Its formulation is very easy, and modern
computers can cope with the high-rank linear systems which may
result from its application. However, these systems are only the
truncated approximations of the theoretical systems of infinite
rank in a rigorous formulation of the method, and some dif-
ficulties, such as the relative convergence effect, may lead to false
results [2], [3] or a too slow rate of convergence may lead to
inaccurate results. In this work we present a method based upon
the edge effect theory, which may improve the convergence. We
shall present our method in Section I, then we shall study its
application to different kinds of discontinuities in order to know
its range of interest.

Manuscript received February 14, 1975; revised November 10, 1975.
The author is with the Centre Nationale d’Etudes des Télécommunica-
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I. MopAL ANALYSIS AND EDGE EFFECT

Let us consider an abrupt transition between a left waveguide
the kth normal mode of which has transverse components
(e, ,h.), and a right waveguide the pth normal mode of which has
transverse components (e, ”,4,”). The equations which describe
the scattering of the nth left normal mode on the transition have
the following form:

; (‘;kn + Rk)ek’(xy y) = Z Tpep"(xs y)
P

; ((skn - Rk)hk'(x’ y) = Z Tph"(x) y)

1
)

where the unknown coefficients are (Ry) and (7,) (k,p =

2,-++). By taking the cross product of the two sides of these
equations with the functigns of any set complete on the cross
section, one obtains an equivalent infinite algebraic linear system.
For instance, with the set {e,”} one may transform (1) into

o
= kle (akn -+ Rk)Vpk (P 1729 " 'aw) (3)
where the V), are defined by integrals on the mode components.
Equation (2) is transformed in a similar way.

The practical resolution consists of retaining a finite number of
unknown modal coefficients. For instance, system (3) is replaced

by

N
T, = kz—;l (Orn + RV, (p = 12,---.P) 0))

and the integers N and P are chosen in order to have as many
equations as unknown coefficients. Then, one has an ordinary
linear system.
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In that process one gives up any available knowledge on the
modal coefficients of higher order. Now, such a knowledge exists
as soon as there is an edge effect in the discontinuity between the
two guides; then, one may write R, ~ Rf(k) for high k, where
R is unknown and f(k) is a known function (Appendix A). It is
possible to introduce this information in the computation by
replacing (4) by

N
T, = X Valu + R) + R T VufG). (3)

SN

There is one more unknown coefficient (R), and thus one has to
retain one more value for integer p. It seems reasonable to think
that (5) is a better approximation of (3) than the mere truncation
of (4), and we may hope for a better behavior of the calculations
with this new system.

In the following sections of this short paper we present the
results of our method in different cases of edge effect; we intend to
study its accuracy in comparison with the usual method. Section
IT deals with capacitive and inductive diaphragms and Section
III deals with dielectric steps.

II. DIAPHRAGMS

In order to study the convergence properties of our method, it
is better to deal with a problem which has an analytical solution.
We chose the asymmetrical semidiaphragm in rectangular wave-
guide, either capacitive or inductive (Fig. 1), and we calculated
its equivalent shunt impedance by different ways.

1) Exact calculation.?

2) Modal analysis with ordinary truncation. Different methods
are possible; we retained that described by Lee, Jones, and
Campbell (LIC) [2], which has a quite better rate of con-
vergence than that described by Mittra, Itoh, and Li (MIL) [3].
These different methods correspond to the use of different com-
plete sets to transform (1) and (2).

3) Our method with edge effect. Its only difficulty lies in the
summation of the series appearing in (5) and it depends strongly
on the formalism followed before truncation. For instance, the
LJIC method leads to a series like 3, k=™ sin (kam) where o
is the relative width of the diaphragm; there is no problem with
semidiaphragm (« = 1/2) but there would be one with arbitrary
«. We preferred the MIL method for our calculations; the
corresponding series behaves as Y k=™ whatever « is,

In Figs. 2 and 3 we have plotted the relative error on shunt
impedance (X — Xeyact)/Xexac: VErsus the number of modes re-
tained in the truncation, both with usual modal analysis and with
our method, for three frequencies: just above the cutoff of the
dominant mode, just below the cutoff of the first higher mode,

and an intermediate frequency. One can see that taking account
"~ of the edge effect leads to a substantial improvement in accuracy,
especially for the capacitive diaphragm. The improvement is less
spectacular for the inductive diaphragm; we think that must be
connected with the nature of the field singularity which is quite
weaker in the second case (singularity in #*/? instead of »~1/?
for the capacitive case) [4, pp. 18-20].

We have reported similar results elsewhere on the problem of
bifurcation [5], which also has an analytical solution and may be
connected to the problem of the diaphragm [3]. Especially, we
found that there is no longer any relative convergence effect
[2], [3] with our method, which may be easily understood since
that effect is due to the truncation in usual modal analysis while

1 See [4, p. 441] for inductive semidiaphragm and [4, pp. 347 and 452]
for capacitive semidiaphragms.
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Fig. 1. (a) Capacitive semidiaphragm in rectangular waveguide. (b)

Inductive semidiaphragm in rectangular waveguide.
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Fig. 2. Relative errors on shunt impedance versus the number of modes in
the waveguide for the capacitive semidiaphragm. Continuous lines
correspond to usual modal analysis, dotted lines to our method. The
numbers 1, 2, 3 correspond to the normalized frequencies kob/7 = 1.0198,
1.414, and 1.9895 (ko = w/c).
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Fig. 3. Relative errors for inductive semidiaphragms for the same frequen-

cies as Fig. 2.

in our method the higher terms are retained, at least in their
asymptotic form.

III. DIELECTRIC STEPS

In order to explore the domain of interest of our method, we
turn now towards the quite different problem of dielectric steps
in parallel plate waveguide (Fig. 4). For z > 0 the guide is
loaded with an isotropic slab of dielectric constant ¢ In the
literature such a junction has been especially studied in the case of
TE excitation [6], [7]. The TM case is more interesting with
respect to the edge effect.

The reader will find the main part of the calculation in
Appendix B. We met two difficulties in this problem:.

1) The series of asymptotic terms are very complicated [(B5)]
and they cannot be summed with accuracy. We merely added
the 100 first terms for each of them. Such a procedure applied



210

a

INCIDENT MODE
—
REFLECTED MODES

-—
-~ c
-—

TRANSMITTED MODES
-
\P

8\

Fig. 4. Partially dielectric-filled junction in parallel-plate waveguide.
The incident mode is the dominant mode, either in TM case (TEM
mode) or in TE case.

to the diaphragm problem would have degraded the precision
of the resulits.

2) How to appreciate the validity of the results and their
convergence? Checking how the basic equations (1) and (2) are
verified seems to be the best criterion. For that we calculate the
ratios

- j ]EL _ ER]2 ds

_ { |Hy, — H|? ds
‘f ]ELIZ ds

| |HL|? ds

&g ey
where the integrals are taken over the cross section, and where
E,,-Hj and Eg, Hy are the computed transverse fields in the
junction plane. (These fields would appear directly in (1) and (2)
after truncation.)

Similar criteria have already been used [6], [8]. The ratios
& ahd & must be small if the calculation is good. Unfortunately,
the integrals are very difficult to calculate in our case because
they contain infinite series due to the asymptotic terms, and these
series behave quite badly (roughly as >, k~* cos knx/a for the
electric field and as 3, k17" cos knx/a for thé magnetic field,
with 0 < ¢ < 1). We retained only a rough approximation of
them by adding the 100 first terms.

However, that criterion concerns the synthesis of the entire
field while often only the first scattering coefficients have practical
importance; there is no tight connection between the accuracy
on these coefficients and the smallness of &; and ¢g. Thus if we
are interested only in these coefficients (for instance, if we want
to establish some equivalent circuit of the junction), it is better
to observe the apparent convergence of these coefficients.

We have reported some of our results in Table 1. Successively,
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one reads the number of modes in the empty waveguide, ¢z,
with the usual method and with ours, &g with the usual method
and with ours, and the reflection coefficient of the dominant
mode R, with the usual method and with ours. The table corres-
ponds to parameters c¢/a = 0.231 and ¢ = 2.47; the normalized
frequency is kqa/m = 0.191 for the upper part, and 0.835 for the
lower part. At first glance we may state the following conclusions.

1) The usual modal analysis gives scattering coefficients which
converge rapidly. The rate of convergence decreases with higher
frequeney or higher dielectric constant, but it remains good (for
instance, with ¢ = 991, kqa/mr = 0.835, and 15 modes, one
obtains R; with likely less than 0.2-percent error).

2) The usual modal analysis gives a good enough approx-
imation for the magnetic field (low ¢g), but a poor one for the
electric field (high eg), which was expected since only the
electric field is singular. Both ¢z and &y increase with higher
frequency, as is usual in modal analysis.

3) Our method gives some improvement on ¢z and g, but
the gain is rather moderate, especially on ¢g: that would signify
that the singularity is not adequately described by the only
asymptotic terms we retained in our calculation.

4) Our method seems to increase the rate of convergence for
the scattering coefficients. However, we must point out two
objections which cannot be inferred from the table. First, the
results are sensitive to the accuracy with which the asymptotic
series is summed. We noted that in the diaphragm problems. In
the dielectric step the series cannot be summed easily and thus
one can induce some error. Second, for some values of N one
may obtain abnormal results (high ¢ and g5, R, far from its
limit) which disappear for the following values of N. We do not
explain that instability; perhaps it may be related to the problem
of the summation of the series? In any case it is a serious ob-
jection against a large use of our method, at least in that problem.

In conclusion, if there is interest only in the first scattering

" coefficients, we think it preferable to use the usual modal analysis
which converges very rapidly in that problem (compare the
aforementioned 0.2-percent error for 15 modes with the curves
in Figs. 2 and 3), for the gain in convergence with our method is
seriously counterbalanced by the difficulty of summing the series.
If one is interested in the whole electromagnetic field, only our
method takes into account the singularity; but we have seen that
the improvement so obtained is not sufficient. That is likely
connected with the weakness of the singularity (with ¢ = 2.47,

TABLE 1
COMPARISON BETWEEN USUAL METHOD AND OQURS FOR THE DIELECTRIC STEP

k a/m = 0.191
[e]
N EE €H Rl
usual ours usual ours usual ours
5 11.3 1072 s.6 1074 | 1.2 1078 6.4 1077 0.037298 + i 0.003106 0.0372%2 + i 0.003181
10 | 7.4 1072 5.5 1074 1 1.7 1077 6.4 107° 0.037294 + 1 0.003162 0.037293 + i 0.003185
15 5. 1073 5. 1074 ] 7.7 1078 6.4 1070 1 0.037203 + 1 0.003175 0.037293 + i 0.003184
k a/m = 0.835
[}
5 | 4.7 1072 8.2 1073 | 1.9 107 3.1 1078 0.050561 + i 0.006421 0.050523 + i 0.006510
10 | 3.5 1072 8.6 1073 J 3.1 1078 3.5 1078 0.050527 + i 0.006861 0.050495 + i 0.006867
15 | 2.8 1072 7.8 107 L 1.5 1078 3.6 1078 0.050528 + i 0.006357 0.050532 + i 0.00701
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close to the edge, one must go 160 times nearer the edge in order
to double the electric field); the modal coefficients must not be
represented by their asymptotic form below very high order.

For completeness, let us mention the case of TE excitation.
There is no longer any edge effect in it [9], and no information
can be deduced from it.> The usual modal analysis converges
quite rapidly: for instance, we obtain &z = 3.8 1077 and eg=
571077 with c/a = 0.2786, & = 247, kqa/r = 1.617, and
N = 15,

IV. CoNcLUSION

Our method is an attempt to take into account a part of the
information which is lost with the truncation in usual modal
analysis. Such information is available when there is an edge
effect. Thus one obtains more accurate results for the same num-
ber of modes. The interest of our method depends on two factors.

1) The field must be perturbed by the singularity on a large
scale. If the field varies as r? near the edge, the exponent p has
to be as far as possible from zero. With a weak perturbation the
ordinary modal analysis converges rapidly and our method is
not worthy. ‘

2) The series which appears in our method must be summed
easily. This is possible with problems of diaphragms or bi-
furcation; it is not the case in dielectric steps.

Thus our method has little interest for dielectric steps. Never-
theless we gave some details on that problem because there are
few published results on it. On the contrary, we obtain good
results with diaphragms: over 99 percent of the useful frequency
range in rectangular waveguide, we have less than 0.3-percent
error in the inductive case with 20 modes (against 1.8 percent
with the usual method). In the capacitive case, where the per-
turbation is very strong, we have less than 0.02-percent error with
20 modes (against 0.7 percent with the usual method).

APPENDIX A
ASYMPTOTIC BEHAVIOR OF MODAL AMPLITUDES

In order to make clearer the derivation of the function f(k)
from the edge condition, let us begin by the example of the
capacitive diaphragm in parallel-plate waveguide [6 — o in
Fig. 1(a)]. It is well known that one may write the electric field
as e(x) + R(x — a/2)~*/?in the diaphragm plane [4, pp. 18-20],
where e(x) is regular and where R is an unknown constant. Thus
the kth reflection coefficient is

a
R, = 2 f (e + —L_.. ) cos kn = dx.
aJap Vx — a2 a

When k -» oo, the contribution from e(x) behaves as k2, and
the contribution from the singular term may be written as

[ 2 J’“’cos(X+k7r/2)d
Nakn Jo Vx

It decreases as k~/2 and thus is the dominant term.

We see that the asymptotic behavior of the modal coefficient is
ruled by the expression of the field near the edge. That may be
generalized as follows. One may always consider the modal
coefficients as Fourier coefficients of the transverse fields; it is
well known that the asymptotic behavior of Fourier coefficients
of a given function is ruled by the singularity of highest order
which appears in that function or its derivatives. In our case of

X] R = fOR.

2 On that point we do not understand [6, p. 275, condition f. 5].
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singularity due to the edge effect, we can know exactly the form
of the singularity (at least in simple cases—as far as we know
there is no theory of edge effect for obstacles of arbitrary shape)
and then we derive from it the asymptotic behavior of modal
coefficients.

APPENDIX B
The equations of the scattering of the TEM mode are
el

Y (6x0 — R cos kn 2
k=0 a

S kY3 B1
pgl Ty e(x) ho(x)  (BD)

o)
Y, Guo + Ry cos kng T, h,(x) (B2)
=0

I
s

where the unknown coefficients are R, and 7,. The other
quantities are

Ve = (1 - (kn/ako)Z)l/Z, (k = 0’1’2'1" * ')
elx) = 80 < x < o), or 1(x > ¢
h(x) = {cos ay'x, O<x<o)
A, cos aya — x), c<x<a

with
A, = cos a;’c/cos a,b
w2 — a® = ke — 1)
o, tan a,’c + eaptanah = 0

rp = (8 - (ap//ko)z)llz'

We solved this system by taking the cross products of (B1) and
(B2) with the functions {cos kn(x/a)} (k = 0,1,---), and then
by eliminating the R,.

In the vicinity of the edge, outside the dielectric, we may write
the electric field as [9]

T—1

E, = l,cos t(p — m)p'~! + I sin 7(p — m)p (B3)

where (p, p) are the polar coordinates defined in Fig. 4, /;, I, are
unknown coefficients, and where t — 1 = 1 — ¢ with

18-—1
2e+1

costz—zz = ., ©O<t<1). (B4)

With respect to the symmetry plane of the dielectric wedge, the
two terms of (B3) correspond to the symmetrical part and the
antisymmetrical of the electric field. Both will be present since
this plane is not a symmetry element of the entire problem. They
lead to the following asymptotic form for the T},:

— dot,’ [Zis + LZ’ (l + (52 - 1) sin® oz,,’c)} T,
3nt , nt
~... | —cos —cos |a,'c — —
[-eo oo e -3)
+ cos -Z—I cos (ozp’b - %{)J (o, )T (e},
+ [—cos 3nt cos (oz,,'c + Et—)
4 2

+ cos %’ cos (oz,,’b + 1’-25)] (@, Y °T(@2 - 1),  (BS)
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where I'(z) is the gamma function. One sees that the antisym-
metric field (/;) corresponds to terms decreasing roughly as
p~3*!, while the symmetric part (I;) corresponds to terms as
P17t As (B4) gives ¢ near unity, especially for low ¢, one cannot
‘neglect the antisymmetric part. We retained the two kinds of
terms in our calculation.
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Improved Accuracy for Commensurate-Line Synthesis

JAMES KOMIAK, STUDENT MEMBER, IEEE, AND
HERBERT J. CARLIN, FELLOW, IEEE

Abstract—By employing a simple transformation that preserves
numerical accuracy, improved precision is obtainable using a Richards’
extraction technique to obtain characteristic impedances of commensurate
transmission-line structures. Furthermore, reduced sensitivity to co-
efficient truncation can result in computational savings.

In this short paper, we would like to report on certain aspects
of the numerical calculation of characteristic impedances of
cascaded commensurate-line networks. If correctly employed,
Richards® extraction can be an extremely simple yet powerful
and well-behaved algorithm. If misapplied, it can create large
numerical inaccuracies.

The most important application of commensurate-line
synthesis has been to problems of insertion loss design. The
prescribed problem is typically the realization of a transducer
gain function

_ 12y\n
5231(M)s21(—4) = %_('ATz))
nl— 1=iQ

where P, is an even polynomial of degree 27 and the transformed

= |s2: GO (D)
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frequency variable is

Z + jQ = A = tanh pr, p =0+ jo

where o is radian frequency.! For example Levy [1] gives
commensurate-line characteristic impedances for low-pass
Chebychey filter transducer gain functions. We here consider the
numerical synthesis of arbitrary (but realizable) transducer gain
functions, for example low-pass or bandpass filters, broad-band
transformers, delay lines with amplitude selectivity, equalizers,
matching networks, etc.

Considering a lossless reciprocal 2 port in the A domain, the
unitary requirement demands that the resistively terminated
2 port have an input reflection factor s,,(1) satisfying

511D (=D = 1 = 53,(Ds21(= D320 = s, G2

The function s, ,(4) is found by choosing the appropriate numer-
ator and denominator root factors. The denominator must be
Hurwitz but there is generally considerable flexibility in the choice
of numerator roots, as well as a choice of a + sign. Our task is
to consider a suitable numerical method to determine the
characteristic impedances of the structure, once s;;(4) has been
given. We can of course proceed directly to the use of Richards’
theorem for extracting the lines, given s,,(4) the input reflection
factor of the resistively terminated cascade. However, this can
lead to large numerical errors.

Our technique is to numerically operate on the input reflection
factor s, () of the resistively terminated cascade in a manner that
preserves numerical accuracy and yields the reflection factor of
the cascade of lines terminated in a short or open circuit rather
than in a resistance. We have found that synthesizing this lossless
function by Richards’ theorem is superior numerically to making
the line extraction calculations directly on s;1(4). In the latter
case we deal with a two-element-kind network, whose input
impedance is complex at real frequencies. If we use the lossless
reflection factor, we deal with a purely reactive unit element
network,

Separate the numerator and denominator terms of sl ,(4) into
even and odd parts

k() + ho(A)

51,(A) = . 2
YT 0+ 0
The reflection factors of the unterminated cascade are then
_ (go + ho) - (ge - he)
1s = (3)
(g, + ho) + (g. — ko)
e + he — Yo T ho
51y = (g ) — (g ) @
(ge + he) + (go - ho)
(g9, + h,) — (go + k)
S5 = (5)
2 (go + ko) + (g + B
(ge - he) - (go - ho)
Sp0 = . 6)
2 (g = he) + (95 — ho) ¢

Here s, and s, are the reflection factors at port 1 when the
opposite port is short or open circuited, respectively, and s,, and
55, are similarly defined at port 2. These relations are generally
valid starting with any resistively terminated reactance 2 port,
e.g., interdigital filters, but must be slightly modified if 5,,(0) =

1 ) = coth pr may be used equally well.



